Neural models for information retrieval without labeled data
نویسندگان
چکیده
منابع مشابه
Neural Models for Information Retrieval
Neural ranking models for information retrieval (IR) use shallow or deep neural networks to rank search results in response to a query. Traditional learning to rank models employ machine learning techniques over hand-crafted IR features. By contrast, neural models learn representations of language from raw text that can bridge the gap between query and document vocabulary. Unlike classical IR m...
متن کاملa new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولPublic Transport Ontology for Passenger Information Retrieval
Passenger information aims at improving the user-friendliness of public transport systems while influencing passenger route choices to satisfy transit user’s travel requirements. The integration of transit information from multiple agencies is a major challenge in implementation of multi-modal passenger information systems. The problem of information sharing is further compounded by the multi-l...
متن کاملParameterized Neural Network Language Models for Information Retrieval
Information Retrieval (IR) models need to deal with two difficult issues, vocabulary mismatch and term dependencies. Vocabulary mismatch corresponds to the difficulty of retrieving relevant documents that do not contain exact query terms but semantically related terms. Term dependencies refers to the need of considering the relationship between the words of the query when estimating the relevan...
متن کاملLearning the Structure of Generative Models without Labeled Data
Curating labeled training data has become the primary bottleneck in machine learning. Recent frameworks address this bottleneck with generative models to synthesize labels at scale from weak supervision sources. The generative model’s dependency structure directly affects the quality of the estimated labels, but selecting a structure automatically without any labeled data is a distinct challeng...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACM SIGIR Forum
سال: 2019
ISSN: 0163-5840
DOI: 10.1145/3458553.3458569